
Double Precision Optimized Arithmetic Hardware Design for Binary & Floating
Point Operands

Vikram Palodiya#1, Hemant Ghayvat#2, D.S Ajnar#3, Pramod Kumar Jain#4.
#1, 2, 3, 4. Micro Electronics and VLSI design

** Electronics & Instrumentation Engineering department, SGSITS, Indore, MP
 #1 pal.vicky2008@rediffmail.com, #2ghayvat@gmail.com, #3dsajnar@gmail.com,

#4pramod22_in@yahoo.com

ABSTRACT - In today’s scientific changes incident
and rapid growth in financial, commercial, Internet-
based applications, there is a huge demand for finding
out the devices with low latency, power and area along
with there is an growing need to allow computers to
operate on both binary and decimal floating-point
numbers. Accordingly, stipulation for decimal
floating-point support is being added to the IEEE-754
Standard for Floating-Point Arithmetic. In this
research work, we present the design and
implementation of a decimal floating-point adder that
is acquiescent with the current draft revision of this
standard. The adder supports operations on 64-bit
(16-digit) decimal floating-point operands [1] .We
provide synthesis results indicating the estimated area
and delay for our design when it is pipelined to
various depths.

Keywords - Mantissa, Exponent, Sign bit, Operands,
Latency, Underflow, and Overflow.

I. INTRODUCTION
Various high level or gate level programming

languages have a potential for specifying floating -point
numbers. The most frequent technique is to stipulate
them by a real declaration statement as conflicting to
fixed -point numbers, which are specified by an integer
declaration statement. Any computer that has a
compiler for handling floating point arithmetic
operations, the operations are quite often included in
the internal hardware. If no hardware resources
available for that particular operation, the compiler
must be designed with a package of floating point
software subroutines (logic code which may be of a few
line or thousands of lines, require repetitively).the
hardware resource utilization method is more
expensive, but it is so much more efficient than the
software resource utilization method .the floating point
hardware is incorporated approximately in all computer
system and omitted only in very small ones [4].
Example of floating point hardware devices are Intel
8231, LPC3180 (it is an ARM9-based microcontroller
for embedded applications requiring

High performance combined with low power
dissipation.) and AMD’s AM9512 floating point
processor. This type of processor unit provides add,
subtract, multiply, and divide operation for 32-bit and

64-bit operands. It can easily interface to enhance the
computational capabilities of the host CPU because of
this no need to change existing system resources, they
have great adaptability.

 The design performs addition and subtraction on
64-bit operands and can be pipelined to achieve
substantial improvements in its critical delay path [5]. It
can also be extended to support operations on 32-bit
and 128-bit decimal floating-point numbers. Related
work on decimal arithmetic includes designs for fixed-
point decimal adders [6-7] and floating-point decimal
processors [8-9]. Formats are specified for decimal
floating-point numbers having widths of 32, 64, and
128 bits, which correspond to significant of 7, 16, and
34 decimal digits, respectively [5].

Figure 1.1

II. METHODOLOGY
The register is the important term for these type of

operation and their excecution,it is the group of flip
flops where each one have storing potential of one bit at
a time. For a particular logic of work the configuration
of register is different .the register configuration for
floating point operations is approximately similar to the
arrengement for fixed point operations. They both
excecute mantissa operation simillar way but the
difference takes place in operations related to exponents
,the same ragisters and adder used for fixed point
arithmetic are usd for processing the mantissas. The
registere association for floating point operation as
given in figure.it contains three different field: First for
sign bit ,Second for mantissa in uppercase letter and
Last one for exponent in lowercase letter.

 The term A of AC represent mantissa,whose sign
is given by As and a magnitude that is in A.as we have

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

32 ISSN : 0975-8283

taken exponent is in the part of the register denoted by
the lowercase letter symbol a..most significant bit of A
,labeled by A1.bit in this position should be 1 for
normalized.

Similarly role,register BR is association into B1 ,Bs
and b , and QR into Q1 ,Qs and q. a parralel adder
perform the operation based on the value of the two
mantissas and trasfers the resultant into A and the carry
into E. A saprete paralle adder is used for the
exponents.

Since the exponents are biased ,they do not have a
distinct sign bit but are represented as a predisposed
positive magnitude .it is understood that the floating
point numbers are so large that the chance of an
exponent overflow is very less, and for this reason the
exponent overflow deserted . the exponents are also
linked to a magnitude comparator that provide three
binary outputs to designate their relative magnitude.

 The numeral is in mantissa will be consider as a
fraction, so the binary point is assumed to exist in to the
left of the magnitude part.

The records in the registers are understood to be
primarily normalized but after each arithmetic
operation,the result will have to normalized. So the
process of normalization require repeatetively after
each and every operation.Thus all floating point
operands coming from and going to the memory unit
are always normalized [4].

Figure 1.2 1

Addition operation
This operation is an addition of the two floating

point operands data values (they are binary for
machine). Two double-precision floating point inputs
are added. Before the addition the exponent part of both
the input will have to be equal in magnitude, then it is
eligible for addition operation which takes place mainly
between the mantissa parts of the floating point number
is added to each other .After implementing this logic by
the executing the instruction, result will be in the form
of three parts. Sign, mantissa and exponent. The result
here is shown in the sign, sum and exponent The
operand A is in decimal value is 2.2700000000e-001
and the operand B in the decimal value is

3.4000000000e+001. The addition of two double-
precision floating point number is
3.422700000000000e+001. This shows the resultant in
the sign, sum, and exponent.

Subtraction operation
These two operations addition and subtraction are

quiet same. Both the operations are very useful in the
complex systems where complex addition and
subtraction are being done. After executing the
instruction, the result is generated in three different
parts like sign, exponent, and mantissa.

The result here is shown in the sign, diff and
exponent. The decimal value of the operand A is
4.6500000000e+002, and the operand B is
6.5000000000e+001. The subtraction of these two
numbers will result in a floating point number. The
number in the decimal format is
4.000000000000000e+002. The resultant output can be
shown in the fig. is sign, diff, and exponent.

RTL View of Simulation:

Figure 1.3

Figure 1.4

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 33

Figure 1.5

Figure 1.6

Figure 1.7

 Figure 1.8

Waveform Generation For Addition-Subtraction

Figure 1.9

Figure 1.10

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

34 ISSN : 0975-8283

Figure 1.11

Subtraction

III. CONCLUSION
A floating-point arithmetic module with an

optimized area and speed is presented. The effect of
normalization on the area and speed has been examined
experimentally. The design has been mapped on tools
like Xilinx, Altera and optimized on tools like
Microwind, Cadence. The presented Double -precision
floating-point adder, and subtractor modules run at
slightly faster clock speed with used area less than that
used previously. . The proposed design has 11.2 ns
delay; number of slice LUT used 936, number of
bonded IOBs 187., Minimum Period 10.567 ns
,Maximum Frequency 168.236 MHz ,Minimum Input
Arrival Time before Clock 11.097 ns,Maximum Output
Required Time after Clock 12.536ns, Gate Delay
(Logic) 3.937ns ,Net Delay (Route) 5.266 ns.

IV. REFERENCES
[1] Thompson, Nandini Karra, and Michael J. Schulte “A

64-bit Decimal Floating-Point Adder” , IEEE Computer
Society Annual Symposium on VLSI Emerging Trends
in VLSI Systems Design (ISVLSI’04)2004 IEEE.

[2] Hajime Kubosawa, Akira Katsuno, Hiromasa Takahashi,
Tomio Sato, Atsuhiro Suga and Gensuke Goto, “A 64-bit
Floating Point Processing Unit for a RISC

Microprocessor”, Fujitsu Laboratories Ltd.10-1,
Morinosato-Wakamiya, Atsugi 243-01, Japan 1992 IEEE

[3] HDL implementation and analysis of a residual register
for A floating-point arithmetic unit By Akil kaveti March
25, 2008 Dr. William r. Dieter Director of thesis Dr.
Yuming zhang Director of graduate studies

[4] Mano, Morris M., “COMPUTER SYSTEM
ARCHITECTURE”.

[5] “Draft IEEE Standard for Floating-Point Arithmetic”,
IEEE, inc., New York, 2003. Available from:
Http://794r.ucbtest.org/drafts/794r.pdf.

[6] M.S .Schmookler and A.W. Weinderger, “High Speed
Decimal Addition”, IEEE Transactions on. Computers,
Vol. C-20, pp. 862-867, August 1971.

[7] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M.
Schwarz, and Steven R. Carlough, “The IBM 900
Decimal Arithmetic Unit”, Conference Record of the
35th Asilomar Conference on Signals, Systems and
Computers, Vol. 2, pp. 1335-1339, IEEE, November
2001.

[8] G. Bohlender and T. Teufel, “A Decimal Floating-Point
Processor for Optimal Arithmetic”, Computer arithmetic:
Scientific Computation and Programming Languages,
pp. 31-58, 1987.

[9] M. S. Cohen, T. E. Hull, and V. Carl Hamacher,
“CADAC: A Controlled-Precision Decimal Arithmetic
Unit”, IEEETransactions on Computers, Vol. 32, No. 4,
pp. 370-377, IEEE, April 1983.

[10] RA. Kaivani A. Zaker aihosseini S. Gorgin M. Fazlali
“Reversible Implementation of Densely-Packed-Decimal
Converter to and from Binary-Coded-Decimal Format
Using in IEEE-754” , Department of Electrical and
Computer Engineering Shahid Beheshti University,
Tehran, lran.

[l1] M. F. Cowlisha, “Decimal Floating-Point: Algorism for
Computers”, Proceedings of the 16th IEEE Symposium
on Computer Anathematic, pp. 104-1 1 1, June 2003.

[12] Fadi Y. Busaba et al., “The D3M 2900 Decimal
Anthmetic Unit”, IEEE Trans. on Computers, Vol. 2, pp.
1335-1339, Nov.2001.

[13] Andre Guntoro and Manfred Glesner “High-Performance
Fpga-Based Floating-Point Adder with Three Inputs”
2008 IEEE.

[14] Subhash Kumar Shrama, Himanshu Pandey, Shailendra
Sahni and Vishal Kumar Srivastava “Implementation of
IEEE-754 Addition and Subtraction for Floating Point
Arithmetic Logic Unit”.

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 35

